Skip to content

Queue

A queue is a linear data structure that follows the First-In-First-Out (FIFO) rule. As the name suggests, a queue simulates the phenomenon of lining up, where newcomers join the queue at the rear, and the person at the front leaves the queue first.

As shown in the figure below, we call the front of the queue the "head" and the back the "tail." The operation of adding elements to the rear of the queue is termed "enqueue," and the operation of removing elements from the front is termed "dequeue."

Queue's first-in-first-out rule

Common operations on queue

The common operations on a queue are shown in the table below. Note that method names may vary across different programming languages. Here, we use the same naming convention as that used for stacks.

Table   Efficiency of queue operations

Method Name Description Time Complexity
push() Enqueue an element, add it to the tail \(O(1)\)
pop() Dequeue the head element \(O(1)\)
peek() Access the head element \(O(1)\)

We can directly use the ready-made queue classes in programming languages:

queue.py
from collections import deque

# Initialize the queue
# In Python, we generally use the deque class as a queue
# Although queue.Queue() is a pure queue class, it's not very user-friendly, so it's not recommended
que: deque[int] = deque()

# Enqueue elements
que.append(1)
que.append(3)
que.append(2)
que.append(5)
que.append(4)

# Access the first element
front: int = que[0]

# Dequeue an element
pop: int = que.popleft()

# Get the length of the queue
size: int = len(que)

# Check if the queue is empty
is_empty: bool = len(que) == 0
queue.cpp
/* Initialize the queue */
queue<int> queue;

/* Enqueue elements */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);

/* Access the first element*/
int front = queue.front();

/* Dequeue an element */
queue.pop();

/* Get the length of the queue */
int size = queue.size();

/* Check if the queue is empty */
bool empty = queue.empty();
queue.java
/* Initialize the queue */
Queue<Integer> queue = new LinkedList<>();

/* Enqueue elements */
queue.offer(1);
queue.offer(3);
queue.offer(2);
queue.offer(5);
queue.offer(4);

/* Access the first element */
int peek = queue.peek();

/* Dequeue an element */
int pop = queue.poll();

/* Get the length of the queue */
int size = queue.size();

/* Check if the queue is empty */
boolean isEmpty = queue.isEmpty();
queue.cs
/* Initialize the queue */
Queue<int> queue = new();

/* Enqueue elements */
queue.Enqueue(1);
queue.Enqueue(3);
queue.Enqueue(2);
queue.Enqueue(5);
queue.Enqueue(4);

/* Access the first element */
int peek = queue.Peek();

/* Dequeue an element */
int pop = queue.Dequeue();

/* Get the length of the queue */
int size = queue.Count;

/* Check if the queue is empty */
bool isEmpty = queue.Count == 0;
queue_test.go
/* Initialize the queue */
// In Go, use list as a queue
queue := list.New()

/* Enqueue elements */
queue.PushBack(1)
queue.PushBack(3)
queue.PushBack(2)
queue.PushBack(5)
queue.PushBack(4)

/* Access the first element */
peek := queue.Front()

/* Dequeue an element */
pop := queue.Front()
queue.Remove(pop)

/* Get the length of the queue */
size := queue.Len()

/* Check if the queue is empty */
isEmpty := queue.Len() == 0
queue.swift
/* Initialize the queue */
// Swift does not have a built-in queue class, so Array can be used as a queue
var queue: [Int] = []

/* Enqueue elements */
queue.append(1)
queue.append(3)
queue.append(2)
queue.append(5)
queue.append(4)

/* Access the first element */
let peek = queue.first!

/* Dequeue an element */
// Since it's an array, removeFirst has a complexity of O(n)
let pool = queue.removeFirst()

/* Get the length of the queue */
let size = queue.count

/* Check if the queue is empty */
let isEmpty = queue.isEmpty
queue.js
/* Initialize the queue */
// JavaScript does not have a built-in queue, so Array can be used as a queue
const queue = [];

/* Enqueue elements */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);

/* Access the first element */
const peek = queue[0];

/* Dequeue an element */
// Since the underlying structure is an array, shift() method has a time complexity of O(n)
const pop = queue.shift();

/* Get the length of the queue */
const size = queue.length;

/* Check if the queue is empty */
const empty = queue.length === 0;
queue.ts
/* Initialize the queue */
// TypeScript does not have a built-in queue, so Array can be used as a queue 
const queue: number[] = [];

/* Enqueue elements */
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);

/* Access the first element */
const peek = queue[0];

/* Dequeue an element */
// Since the underlying structure is an array, shift() method has a time complexity of O(n)
const pop = queue.shift();

/* Get the length of the queue */
const size = queue.length;

/* Check if the queue is empty */
const empty = queue.length === 0;
queue.dart
/* Initialize the queue */
// In Dart, the Queue class is a double-ended queue but can be used as a queue
Queue<int> queue = Queue();

/* Enqueue elements */
queue.add(1);
queue.add(3);
queue.add(2);
queue.add(5);
queue.add(4);

/* Access the first element */
int peek = queue.first;

/* Dequeue an element */
int pop = queue.removeFirst();

/* Get the length of the queue */
int size = queue.length;

/* Check if the queue is empty */
bool isEmpty = queue.isEmpty;
queue.rs
/* Initialize the double-ended queue */
// In Rust, use a double-ended queue as a regular queue
let mut deque: VecDeque<u32> = VecDeque::new();

/* Enqueue elements */
deque.push_back(1);
deque.push_back(3);
deque.push_back(2);
deque.push_back(5);
deque.push_back(4);

/* Access the first element */
if let Some(front) = deque.front() {
}

/* Dequeue an element */
if let Some(pop) = deque.pop_front() {
}

/* Get the length of the queue */
let size = deque.len();

/* Check if the queue is empty */
let is_empty = deque.is_empty();
queue.c
// C does not provide a built-in queue
queue.kt

queue.zig

Code Visualization

https://pythontutor.com/render.html#code=from%20collections%20import%20deque%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E9%98%9F%E5%88%97%0A%20%20%20%20%23%20%E5%9C%A8%20Python%20%E4%B8%AD%EF%BC%8C%E6%88%91%E4%BB%AC%E4%B8%80%E8%88%AC%E5%B0%86%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E7%B1%BB%20deque%20%E7%9C%8B%E4%BD%9C%E9%98%9F%E5%88%97%E4%BD%BF%E7%94%A8%0A%20%20%20%20%23%20%E8%99%BD%E7%84%B6%20queue.Queue%28%29%20%E6%98%AF%E7%BA%AF%E6%AD%A3%E7%9A%84%E9%98%9F%E5%88%97%E7%B1%BB%EF%BC%8C%E4%BD%86%E4%B8%8D%E5%A4%AA%E5%A5%BD%E7%94%A8%0A%20%20%20%20que%20%3D%20deque%28%29%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%85%A5%E9%98%9F%0A%20%20%20%20que.append%281%29%0A%20%20%20%20que.append%283%29%0A%20%20%20%20que.append%282%29%0A%20%20%20%20que.append%285%29%0A%20%20%20%20que.append%284%29%0A%20%20%20%20print%28%22%E9%98%9F%E5%88%97%20que%20%3D%22,%20que%29%0A%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%0A%20%20%20%20front%20%3D%20que%5B0%5D%0A%20%20%20%20print%28%22%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%20front%20%3D%22,%20front%29%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%87%BA%E9%98%9F%0A%20%20%20%20pop%20%3D%20que.popleft%28%29%0A%20%20%20%20print%28%22%E5%87%BA%E9%98%9F%E5%85%83%E7%B4%A0%20pop%20%3D%22,%20pop%29%0A%20%20%20%20print%28%22%E5%87%BA%E9%98%9F%E5%90%8E%20que%20%3D%22,%20que%29%0A%0A%20%20%20%20%23%20%E8%8E%B7%E5%8F%96%E9%98%9F%E5%88%97%E7%9A%84%E9%95%BF%E5%BA%A6%0A%20%20%20%20size%20%3D%20len%28que%29%0A%20%20%20%20print%28%22%E9%98%9F%E5%88%97%E9%95%BF%E5%BA%A6%20size%20%3D%22,%20size%29%0A%0A%20%20%20%20%23%20%E5%88%A4%E6%96%AD%E9%98%9F%E5%88%97%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%0A%20%20%20%20is_empty%20%3D%20len%28que%29%20%3D%3D%200%0A%20%20%20%20print%28%22%E9%98%9F%E5%88%97%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%20%3D%22,%20is_empty%29&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false

Implementing a queue

To implement a queue, we need a data structure that allows adding elements at one end and removing them at the other. Both linked lists and arrays meet this requirement.

Implementation based on a linked list

As shown in the figure below, we can consider the "head node" and "tail node" of a linked list as the "front" and "rear" of the queue, respectively. It is stipulated that nodes can only be added at the rear and removed at the front.

Implementing Queue with Linked List for Enqueue and Dequeue Operations

linkedlist_queue_push

linkedlist_queue_pop

Below is the code for implementing a queue using a linked list:

[file]{linkedlist_queue}-[class]{linked_list_queue}-[func]{}

Implementation based on an array

Deleting the first element in an array has a time complexity of \(O(n)\), which would make the dequeue operation inefficient. However, this problem can be cleverly avoided as follows.

We use a variable front to indicate the index of the front element and maintain a variable size to record the queue's length. Define rear = front + size, which points to the position immediately following the tail element.

With this design, the effective interval of elements in the array is [front, rear - 1]. The implementation methods for various operations are shown in the figure below.

  • Enqueue operation: Assign the input element to the rear index and increase size by 1.
  • Dequeue operation: Simply increase front by 1 and decrease size by 1.

Both enqueue and dequeue operations only require a single operation, each with a time complexity of \(O(1)\).

Implementing Queue with Array for Enqueue and Dequeue Operations

array_queue_push

array_queue_pop

You might notice a problem: as enqueue and dequeue operations are continuously performed, both front and rear move to the right and will eventually reach the end of the array and can't move further. To resolve this, we can treat the array as a "circular array" where connecting the end of the array back to its beginning.

In a circular array, front or rear needs to loop back to the start of the array upon reaching the end. This cyclical pattern can be achieved with a "modulo operation" as shown in the code below:

[file]{array_queue}-[class]{array_queue}-[func]{}

The above implementation of the queue still has its limitations: its length is fixed. However, this issue is not difficult to resolve. We can replace the array with a dynamic array that can expand itself if needed. Interested readers can try to implement this themselves.

The comparison of the two implementations is consistent with that of the stack and is not repeated here.

Typical applications of queue

  • Amazon orders: After shoppers place orders, these orders join a queue, and the system processes them in order. During events like Singles' Day, a massive number of orders are generated in a short time, making high concurrency a key challenge for engineers.
  • Various to-do lists: Any scenario requiring a "first-come, first-served" functionality, such as a printer's task queue or a restaurant's food delivery queue, can effectively maintain the order of processing with a queue.