跳轉至

最大容量問題

Question

輸入一個陣列 \(ht\) ,其中的每個元素代表一個垂直隔板的高度。陣列中的任意兩個隔板,以及它們之間的空間可以組成一個容器。

容器的容量等於高度和寬度的乘積(面積),其中高度由較短的隔板決定,寬度是兩個隔板的陣列索引之差。

請在陣列中選擇兩個隔板,使得組成的容器的容量最大,返回最大容量。示例如下圖所示。

最大容量問題的示例資料

容器由任意兩個隔板圍成,因此本題的狀態為兩個隔板的索引,記為 \([i, j]\)

根據題意,容量等於高度乘以寬度,其中高度由短板決定,寬度是兩隔板的陣列索引之差。設容量為 \(cap[i, j]\) ,則可得計算公式:

\[ cap[i, j] = \min(ht[i], ht[j]) \times (j - i) \]

設陣列長度為 \(n\) ,兩個隔板的組合數量(狀態總數)為 \(C_n^2 = \frac{n(n - 1)}{2}\) 個。最直接地,我們可以窮舉所有狀態,從而求得最大容量,時間複雜度為 \(O(n^2)\)

貪婪策略確定

這道題還有更高效率的解法。如下圖所示,現選取一個狀態 \([i, j]\) ,其滿足索引 \(i < j\) 且高度 \(ht[i] < ht[j]\) ,即 \(i\) 為短板、\(j\) 為長板。

初始狀態

如下圖所示,若此時將長板 \(j\) 向短板 \(i\) 靠近,則容量一定變小

這是因為在移動長板 \(j\) 後,寬度 \(j-i\) 肯定變小;而高度由短板決定,因此高度只可能不變( \(i\) 仍為短板)或變小(移動後的 \(j\) 成為短板)。

向內移動長板後的狀態

反向思考,我們只有向內收縮短板 \(i\) ,才有可能使容量變大。因為雖然寬度一定變小,但高度可能會變大(移動後的短板 \(i\) 可能會變長)。例如在下圖中,移動短板後面積變大。

向內移動短板後的狀態

由此便可推出本題的貪婪策略:初始化兩指標,使其分列容器兩端,每輪向內收縮短板對應的指標,直至兩指標相遇。

下圖展示了貪婪策略的執行過程。

  1. 初始狀態下,指標 \(i\)\(j\) 分列陣列兩端。
  2. 計算當前狀態的容量 \(cap[i, j]\) ,並更新最大容量。
  3. 比較板 \(i\) 和 板 \(j\) 的高度,並將短板向內移動一格。
  4. 迴圈執行第 2. 步和第 3. 步,直至 \(i\)\(j\) 相遇時結束。

最大容量問題的貪婪過程

max_capacity_greedy_step2

max_capacity_greedy_step3

max_capacity_greedy_step4

max_capacity_greedy_step5

max_capacity_greedy_step6

max_capacity_greedy_step7

max_capacity_greedy_step8

max_capacity_greedy_step9

程式碼實現

程式碼迴圈最多 \(n\) 輪,因此時間複雜度為 \(O(n)\)

變數 \(i\)\(j\)\(res\) 使用常數大小的額外空間,因此空間複雜度為 \(O(1)\)

[file]{max_capacity}-[class]{}-[func]{max_capacity}

正確性證明

之所以貪婪比窮舉更快,是因為每輪的貪婪選擇都會“跳過”一些狀態。

比如在狀態 \(cap[i, j]\) 下,\(i\) 為短板、\(j\) 為長板。若貪婪地將短板 \(i\) 向內移動一格,會導致下圖所示的狀態被“跳過”。這意味著之後無法驗證這些狀態的容量大小

\[ cap[i, i+1], cap[i, i+2], \dots, cap[i, j-2], cap[i, j-1] \]

移動短板導致被跳過的狀態

觀察發現,這些被跳過的狀態實際上就是將長板 \(j\) 向內移動的所有狀態。前面我們已經證明內移長板一定會導致容量變小。也就是說,被跳過的狀態都不可能是最優解,跳過它們不會導致錯過最優解

以上分析說明,移動短板的操作是“安全”的,貪婪策略是有效的。